The use of an electronic von Frey device for evaluation of sensory threshold in neurologically normal dogs and those with acute spinal cord injury

S.A. Moore *, B.F. Hettlich, A. Waln

Department of Veterinary Clinical Sciences, The Ohio State University, College of Veterinary Medicine, 601 Vernon L. Tharp St., Columbus, OH 43210, USA

A R T I C L E I N F O

Article history:
Accepted 3 November 2012
Available online xxxx

Keywords:
Canine
Spinal cord injury
Sensory threshold
Hypoalgiesia
von Frey anesthesiometry

A B S T R A C T

The utility and inter-session repeatability of sensory threshold measurements using an electronic von Frey anesthesiometer (VFA) were assessed in a group of six neurologically normal dogs. Sensory threshold values obtained in neurologically normal dogs were compared to those of dogs with acute spinal cord injury (SCI) caused by intervertebral disc extrusion (n = 6) and to a group of neurologically normal dogs with cranial cruciate ligament rupture (CCLR; n = 6).

Sensory threshold values in neurologically normal dogs were \(155.8 \pm 37.7\) g and \(154.7 \pm 67.2\) g for the left and right pelvic limbs, respectively. The difference in mean sensory threshold values obtained for the group when two distinct testing sessions were compared was not statistically significant \((P > 0.05)\). Mean sensory threshold values for the group with SCI were significantly higher than those for neurologically normal dogs at \(351.1 \pm 116.5\) g and \(420.3 \pm 157.7\) g for the left and right pelvic limbs, respectively \((P = 0.01)\). A comparison of sensory threshold values for the group with CCLR and neurologically normal dogs was not statistically significant \((P > 0.05)\). The modified dorsal technique for VFA described here represents a reliable method to assess sensory threshold in neurologically normal dogs and in those with SCI.

© 2012 Elsevier Ltd. All rights reserved.

Introduction

Dogs are increasingly recognized as an important pre-clinical animal model for the study of spinal cord injury (SCI) because of the high prevalence of spontaneous SCI in certain breeds (Olby et al., 2004; Levine et al., 2011). While the mechanism of injury frequently observed in dogs differs from that seen in humans with SCI, there are many similarities between the spinal cord pathology after acute SCI and in mediators of secondary injury (Smith and Jeffery, 2006). For these reasons, dogs serve as an attractive model by which to study clinical interventions that could improve sensory and motor outcome after SCI for canine and human patients alike.

Much attention has been paid to assessing motor recovery in dogs for the purpose of clinical trials, including the development of several locomotor scoring systems (Olby et al., 2001; Levine et al., 2009). However, little focus has been applied to quantitative sensory assessment in dogs. Improvements in sensory outcome are important, as they might result in decreased incidence of pressure sores and self-mutilation in canine patients. This could facilitate the detection of injury and decrease the incidence of allodynia or paresthesia, thereby resulting in improved quality of life in humans with SCI.

Several methods to assess sensory threshold are currently employed in rodent models of SCI. These include the infrared plantar heat test, von Frey filament testing and more recently, an electronic method for von Frey anesthesiometry (VFA) applied to the dorsal surface of the paw (Hargreaves et al., 1988; Lindsey et al., 2000; Detloff et al., 2010). While all three techniques offer utility in sensory threshold evaluation, electronic VFA allows for more rapid assessment and better reproducibility compared to other methods (Tena et al., 2011), as well as providing an absolute value for sensory threshold, thus aiding in statistical evaluations.

Two previous studies have used electronic VFA to assess sensory threshold in neurologically normal dogs, but neither evaluated the procedure with the goal of quantifying sensory dysfunction (KuKanich et al., 2005a,b). These previous reports describe a technique applied to the thoracic limbs of standing dogs, which might not be feasible in dogs with acute SCI resulting in severe paraparesis or paraplegia. Additionally, most dogs with acute SCI have injuries involving the T3–L3 spinal cord segments, thus sparing the thoracic limbs. The present study was designed (1) to determine the utility and inter-session repeatability of a modified electronic VFA technique to assess sensory threshold in the pelvic limbs of neurologically normal dogs in a non-weight bearing position; (2) to compare results obtained in neurologically normal dogs with those obtained in dogs with SCI; and (3) to ascertain whether non-neurological disease which limits joint mobility (i.e. orthopedic disease such as cranial cruciate ligament rupture – CCLR) might...
confound the behavioral response used to assess sensory threshold using VFA.

Materials and methods

Animals

This study was approved by the IACUC and the Clinical Research Advisory Committee of The Ohio State University Veterinary Medical Center (OSU VMC). Dogs were enrolled in the study only after written consent from the owner was obtained.

Eighteen dogs were enrolled in the study: six were neurologically normal and free of orthopedic and neurological disease, six had acute SCI secondary to intervertebral disc extrusion (IVDE) and six had unilateral pelvic limb lameness due to cranial cruciate ligament rupture (CCLR). Dogs with IVDE had complete neurological examinations performed to document injury severity and were assigned gait scores ranging from 1 to 14 using the 0-0 spinal cord injury scale – OSCIS (Olbry et al., 2001). Dogs with CCLR were confirmed to be neurologically normal prior to enrollment in the study on complete neurologic examination.

von Frey device

The electronic von Frey device (IITC Life Science) consisted of a load cell, handle, recording device and tip (Fig. 1). The system was supplied with a 1000 g probe and a rigid 0.8 mm diameter tip. An internal load cell was attached to the tip and connected to the recording device, allowing the maximum force applied to the limb to be digitally recorded. The system measured, stored and displayed the amount of pressure applied to a subject, from 0.1 to 1000 g.

Modified dorsal von Frey technique

Initially, various surfaces of the hind paws were evaluated for testing in neurologically normal dogs, as well as various positions for the subject. While the main carpal pad served as a stimulus point for the pelvic limbs during preliminary testing. It also became apparent that acclimation to the testing environment and the dog’s temperament affected the behavioral response observed. The following protocol was used for testing, as it produced subjectively consistent behavioral responses and repeatable sensory threshold readings in neurologically normal dogs.

A quiet room with minimal traffic was chosen for the testing site. A floor mat treated with dog appeasement pheromone (DAP, Ceva Animal Health) was placed in the center of the space. Additionally, a cloth treated with DAP was placed around each animal’s collar at the start of the testing session. Dogs were allowed to acclimate to the testing space for 15 min prior to the start of sensory threshold measurements. During this time, they were allowed to roam freely about the space and investigate their surroundings. They were given attention by the investigators (petting, other positive interactions) only if the dog initiated the interaction.

After 15 min, the dog was placed in lateral recumbency on the mat and maintained in that position with the minimum amount of restraint necessary to do so. Dogs were placed in right lateral recumbency for testing of the left pelvic limb and vice versa. Both pelvic limbs were evaluated and a coin toss determined which side was tested first. Dogs were maintained in lateral recumbency to acclimate for an additional 2 min prior to initiation of testing. The pelvic limbs were allowed to rest on the mat in a neutral position, which varied slightly between dogs. A rigid surface was placed behind the paw for support. The electronic von Frey aesthesiometry (VFA) probe was applied perpendicular to the dorsal surface of the metatarsus, approximately 50% of the distance between tarsometatarsal and metatarso-phalangeal joints in the cutaneous autonomous zone of the peroneal nerve (Fig. 2). For this study, the probe was positioned on the skin between the metatarsal bones IV and V for consistency.

All sensory threshold measurements were made using the VFA probe by the same operator (SM). The evaluator was blinded to the force reading on the VFA device until after a behavioral response was elicited. Steady pressure was exerted via the VFA probe handle and tip as shown in Fig. 1 until the dog made an escape movement (moved the limb away from the probe), vocalized, or the maximum weight of the probe (1000 g) was applied. A simple ‘flinch’ reflex on first touch of the device tip to the dorsal surface of the paw was not accepted as an endpoint. The maximum force applied by the VFA probe at the time the behavioral response occurred was recorded as the measured sensory threshold. A total of five trials were completed for each limb, allowing 30 s in between measurements. The same protocol was used for the dogs with acute SCI and CCLR.

Inter-session repeatability in neurologically normal dogs

To assess inter-session repeatability of the technique, the testing was repeated on the six neurologically normal dogs 1 week after initial testing. Results from the two sessions were compared.

Statistical analysis

Five threshold values were obtained for each pelvic limb in every dog evaluated. The highest and lowest values were excluded and the three middle values were averaged to assign each limb a sensory threshold. Sensory values are reported as a mean ± standard deviation (SD) for the left and right limbs for the group. For statistical comparison between left and right pelvic limbs and for comparison of neurologically normal dogs to those with SCI and those with CCLR, a paired t test was used. Additionally, within the group of dogs with CCLR, the limb affected with CCLR was compared to the orthopedically normal limb. For assessment of correlation between clinical parameters and sensory threshold, Pearson’s correlation coefficient was used. For all statistical analyses, \(P \leq 0.05 \) was considered significant.

Results

Neurologically normal dogs

The group of neurologically normal dogs consisted of three mixed-breed dogs and one each of the following breeds – Pit-bull, Schnauzer, Shih Tzu and Boston terrier. Mean age for the group was 3.2 ± 3 years and mean bodyweight was 15.4 ± 9 kg (range 2.7–29 kg)...

Fig. 1. The electronic von Frey device used in this study. The device consisted of a load cell (A), handle (B), recording device (C) and tip (D). The system measured, stored and displayed the amount of pressure applied to a subject, from 0.1 to 1000 g.

Fig. 2. Dog positioning for the modified dorsal von Frey technique for assessment of sensory threshold in the pelvic limb of dogs. The dog was placed in lateral recumbency and the limb was allowed to rest in a neutral position with a rigid surface placed behind the paw for support. The electronic probe was applied perpendicular to the dorsal surface of the metatarsus, approximately 50% of the distance between tarsometatarsal and metatarso-phalangeal joints in the cutaneous autonomous zone of the peroneal nerve (inset).

Dogs with SCI

The six dogs with SCI included in this study consisted of two mixed breed dogs, two Pugs, one Dachshund and one Beagle. Mean age for the group was 5.0 ± 2.6 years and mean bodyweight was 9.6 ± 4.1 kg (range 4.2–14.8 kg). Injury severities ranged from grade 7–10 on the OSCIS (Olby, 2001). The mean injury severity score for the group was 8 ± 1. All dogs in this group had surgically confirmed acute IVDE with the following lesion locations: T11–T12 (n = 1), T13–L1 (n = 1), L1–L2 (n = 1) and L2–L3 (n = 3). Mean sensory threshold values were 351.1 ± 116.5 g and 420.3 ± 157.7 g for the left and right pelvic limbs, respectively. The correlation between SCI severity and sensory threshold was not statistically significant (r = −0.077, P = 0.44). Sensory threshold was significantly increased for dogs with SCI compared to neurologically normal dogs (P = 0.01; Fig. 3).

Dogs with CCLR

Six dogs with unilateral pelvic limb lameness due to acute CCLR were enrolled in the study. The group consisted of four mixed breed dogs, one Labrador Retriever and one St. Bernard. Mean age for the group was 4.7 ± 2.1 years and mean bodyweight was 37.1 ± 11.5 kg (range 25.0–58.0 kg). Mean sensory threshold values were 284.4 ± 202.4 g and 268.8 ± 70.0 g for the left and right pelvic limbs, respectively. There was no significant difference between sensory threshold values in dogs with CCLR compared to neurologically normal dogs.

Discussion

The modified dorsal technique for VFA described here was easy to employ and produced reliable results in neurologically normal dogs. The investigators noted subjective effects of dog temperament and anxiety level during the pilot phase of technique development, thus necessitating an acclimation period. The same observation was made when VFA testing was used in rodents (Basso, 2004). In fact, rodent studies require a ‘gentling’ period, where an animal is acclimated to the testing device and environment prior to injury induction (Basso, 2004). This period is necessary, as animal anxiety is directly related to the nature and quality of behavioral responses when using VFA or other behavioral testing.

With canine spontaneous SCI, this gentling period is not an option. As such, the 15 min acclimation period was employed to aid in decreasing animal anxiety level. This did appear to subjectively improve results but the minimum time period required for acclimation warrants additional investigation and could be shortened to decrease total testing time per dog. Due to the acclimation period used in this study, total testing time averaged approximately 30 min per dog. This could make the technique time-intensive for the assessment of large groups of dogs in a single setting, but this might not be relevant when performing testing on individual dogs.

Once a standard technique for acclimation was developed, sensory threshold values obtained using this technique were consistent across time in the same set of neurologically normal dogs. Raw sensory threshold values in neurologically normal dogs were independent of age, but correlated strongly with bodyweight (r = 0.938, P = 0.005), thus future studies might focus on whether it is appropriate to scale raw sensory threshold measurements to bodyweight in order to produce a more standardized range of normal values that would not be affected by dog size.

Mean sensory threshold values in dogs with SCI were significantly higher than neurologically normal controls; however several dogs with SCI had sensory threshold values that fell within or close to the range of values detected in neurologically normal dogs. We believe this could have occurred for several reasons. Firstly, it is unclear where in the SCI severity spectrum sensory thresholds become abnormal. It is possible that some of the dogs we evaluated had an injury that was not severe enough to significantly affect sensation. Secondly, multiple sensory abnormalities such as allodynia, dysesthesia and central sensitization to pain are well documented in both humans and rodents with SCI (Yezierski, 2005). These syndromes might lead to sensory threshold values that are lower than normal after SCI. While these syndromes have not been fully explored in canine SCI, they were unlikely to be relevant in this study, as these phenomena are generally observed chronically after SCI and all dogs in the current study were evaluated acutely after injury. Lastly, given the strong correlation between raw sensory threshold values and bodyweight in neurologically normal dogs, it is possible that scaling values to bodyweight could provide a more accurate and standardized assessment of sensory threshold across a population that varies dramatically in size. In fact, when sensory threshold values obtained in this study were scaled to bodyweight (raw value in g divided by bodyweight in kg), the mean values for neurologically normal dogs became 12.5 ± 2.1 g/kg and 12.9 ± 7.2 g/kg for the left and right pelvic limbs, respectively. The mean values for dogs with SCI became 41.7 ± 18.9 g/kg and 46.1 ± 11.6 g/kg for the left and right pelvic limbs, respectively (Fig. 4). Further investigation in a larger population of neurologically normal dogs could determine

Fig. 3. Mean sensory threshold values (±SD) obtained from the right pelvic limb of neurologically normal dogs (n = 6), dogs with acute spinal cord injury (n = 6) and dogs with cranial cruciate ligament rupture (n = 6). *Denotes a statistically significant difference in values compared to neurologically normal dogs (P < 0.05 considered significant).
whether scaling of sensory thresholds based on weight is appropriate and could allow for a more accurate statistical assessment of differences between groups of various bodyweights.

We attempted to correlate sensory threshold values in this small group of dogs with SCI with injury severity as determined by the OSCIS, but a significant relationship was not observed based on raw sensory threshold values ($r = -0.077$, $P = 0.44$). Again, this finding could be due, at least in part, to the variability in dog size in the SCI group and the strong correlation between bodyweight and sensory threshold values. When sensory threshold values were scaled to bodyweight and correlation with injury severity was examined, the inverse relationship closely approached significance ($r = -0.72$, $P = 0.06$). This relationship might be expected in dogs acutely after SCI, where higher sensory thresholds corresponding to decreased limb sensation would be expected in dogs with more severe SCI. This relationship warrants further investigation in a larger population of dogs. Additionally, the impact of the chronicity of the lesion also warrants investigation, to determine whether allodynia or dysesthesias can be documented in dogs with SCI.

Our results indicate that electronic VFA could be useful to quantify sensory dysfunction caused by acute SCI. Sensory threshold values in neurologically normal dogs with CCLR were also evaluated. Many canine patients have concurrent orthopedic and neurologic disease. Because the primary behavioral response recorded during VFA testing is movement of the limb, there was concern that non-neurologic injuries that inhibit mobility or produce pain on joint manipulation might inhibit the response to sensory threshold testing. Dogs with CCLR were no different to neurologically normal controls with respect to sensory threshold values and limbs with CCLR were no different to neurologically normal limbs in the same animal, indicating that CCLR does not inhibit behavioral responses in a way that impacts VFA test results.

While other techniques for VFA have been previously reported in the dog (KuKanich et al., 2005a,b), our technique offers the benefit of application to the pelvic limbs, while the dog is in lateral recumbency. Given the fact that many dogs with acute SCI are unable to perform unassisted weight support, this technique allows for sensory assessment that can be used soon after injury. It should be noted that because this technique requires a behavioral response involving movement of the limb, it might not be practical for use in dogs with complete lack of motor function. Whether vocalization or other escape behaviors might serve as additional markers of sensory perception, allowing the use of VFA in dogs with lack of pelvic limb motor function, remains to be investigated.

Conclusions

The modified dorsal technique for VFA described here represents a reliable means by which to assess sensory threshold in neurologically normal dogs and in those with acute SCI. Additionally, the results of this test are not significantly affected by non-neurologic injuries such as CCLR. This technique could represent an important outcome measure for potential use in clinical trials to assess sensory recovery in dogs with SCI. The relationship between injury severity, injury chronicity and sensory threshold values requires further investigation in a larger cohort of dogs.

Conflict of interest statement

None of the authors has any financial or personal relationships that could inappropriately influence or bias the content of the paper.

Acknowledgements

The authors gratefully acknowledge Dr. Paula Martin-Vaquero and Ms. Tamra Mathie for their assistance in dog handling and data collection. We also acknowledge Mr. Tim Vogt and Mr. Jerry Harvey for their assistance in figure preparation and Dr. D. Michele Basso for her valuable input during the pilot phase of technique design.

References

